M

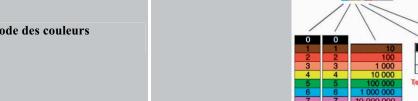
Travail – Energie (W) en joule	En translation : W = F.d	M : moment de la force	2
	En rotation: W = M.θ M = F.r	 θ: rotation (radians) Moment d'une force par rapport à son axe de rotation. F: force r: rayon (mètre) 	3
Puissance mécanique (P) en watt	$\mathbf{P} = \frac{\mathbf{W}}{\mathbf{t}}$	Travail fourni par seconde (t en seconde)	
Champ électrique uniforme (E) en volt/mètre	$\varepsilon = \frac{1}{\varepsilon_0} \cdot \frac{Q}{S}$	Q: quantité d'électrons (Coulomb) S: surface traversée (mètre carré) Eo: permittivité du vide = 8,85 10 ⁻¹²	4
Travail de la force électrique (W) en joule	$W = V_{AB} \cdot Q$	Q : quantité d'électrons (Coulomb) VAB : tension appliquée a une charge Q (volt)	
Champ et potentiel (E) en volt/mètre	$\varepsilon = \frac{V_A - V_B}{AB}$	VA – VB : différence de potentiel (volt) AB : distance (mètre)	5
Intensité du courant (I) en ampère	$I = \frac{Q}{t}$	L' ampère est l'intensité d'un courant constant qui transporte 1 coulomb par seconde.	
Energie absorbée par un récepteur (W) en joule	$W = U \cdot Q$	U: tension (volt) Q: charge (coulomb)	6
Puissance absorbée par un récepteur (P) en watt	P = U . I	I : intensité (ampère)	
Loi d' ohm	$U = R \cdot I$	(Uniquement pour les conducteurs passifs) R : résistance du conducteur (ohm)	
Effet Joule	$W = R \cdot I^2 \cdot t$ $P = R \cdot I^2$	W : énergie calorifique (joule)	7
	$\mathbf{P} = \mathbf{U}.\mathbf{I} = \frac{\mathbf{U}^2}{\mathbf{R}}$	P: puissance calorifique (watt)	8
Force de Laplace (F) en newton	$F = q \cdot V \cdot B$	q : charge (coulomb) V : vitesse (mètre/seconde) B : induction (tesla)	0
Flux magnétique (Φ) en wéber	$\Phi = B \cdot S \cdot \cos \alpha$	α (degré) : angle que fait le vecteur induction B avec la normale à la surface S	
Force magnétomotrice (Fm) en ampère-tour	$F = N \cdot I$	N: nombre de spires	9
Excitation magnétique (H) en ampère-tour / mètre	$H = \frac{F}{L}$	F : force magnétomotrice L : longueur du conducteur (mètre)	
Induction magnétique du vide (Bo) en tesla	Βο = μο . Η	μο: perméabilité dans le vide = $4\pi \cdot 10^{-7}$	10
Induction magnétique (B) en tesla	$B = \mu \cdot Bo = \mu \cdot \mu o \cdot H$	μ: perméabilité relative du matériau	
	$F = B \cdot I \cdot L \sin \alpha$	L'intensité est maximale lorsque le courant et	
Loi de Laplace	1 Dill sin w	l'induction font un angle de 90°	

ÉLECTRICITÉ **M26 MEMENTO**

Z

5

F.E.M induite (E) en volt	$\mathbf{E} = \mathbf{B} \cdot \mathbf{L} \cdot \mathbf{v}$	B: induction (tesla) L: longueur (mètre) v: vitesse (mètre/seconde)
	$\mathbf{E} = -\frac{\Delta \phi}{\Delta t}$	$\Delta \phi$: variation du flux Δt : variation du temps
Fréquence (f) en hertz	$f = \frac{1}{T}$	T : période du signal (seconde)
Pulsation d' un courant (\(\omega \) en radian/seconde	$\omega = 2\pi \cdot f$	
Impédance (Z) en ohm	$Z = \frac{U}{I}$	valable en notation complexe (module et argument)
PUISSANCE MONOPHASEE: Puissance active: (P) en watt	$P = U \cdot I \cdot \cos \phi$	Cos φ = facteur de puissance
Puissance réactive : (Q) en voltampère réactif	$Q = U \cdot I \cdot \sin \phi$	O P O
Puissance apparente (S) en voltampère	$S = U \cdot I$	$\tan \varphi = \frac{Q}{P}, \cos \varphi = \frac{P}{S}, \sin \varphi = \frac{Q}{S}$
PUISSANCE TRIPHASEE: Puissance active: (P) en watt	$P = \sqrt{3} \cdot U \cdot I \cdot \cos \varphi$	
Puissance réactive : (Q) en voltampère réactif	$Q = \sqrt{3} \cdot U \cdot I \cdot \sin \varphi$	Ces trois formules sont valables quelque soit le couplage du récepteur
Puissance apparente (S) en voltampère	$S = \sqrt{3} \cdot U \cdot I$	
MACHINE A COURANT CONTINU: Couple (M) en Newton-mètre	М=К.Ф.І	$K = \frac{p}{a} \frac{N}{2\pi}$
F.E.M. (E) en volt	$E = K \cdot \Phi \cdot \Omega$ $E = N \cdot n \cdot \Phi$	 N: nombre de conducteurs actifs Ω: vitesse angulaire (radian/seconde) p: nombre de paires de pôles a: nombre de paires de voies d'enroulement
F.E.M. d' un transformateur (E) en volt	$E = 4,44 \text{ N} \cdot f \cdot B \cdot S$	S en mètre carré
Rapport de transformation	$m = \frac{U2}{U1} = \frac{N2}{N1}$	N1: nombre de spires au primaire N2: nombre de spires au secondaire U1: tension primaire U2: tension secondaire
F.E.M d'une machine à courant alternatif (E) en volt	$\mathbf{E} = \mathbf{K} \cdot \mathbf{f} \cdot \mathbf{N} \cdot \mathbf{\Phi}$	K : coefficient de Kapp ∪2,22
MOTEUR ASYNCHRONE: Vitesse de rotation (Ω) en radian/seconde	$\Omega = (1 - g) \cdot \Omega s$	g : glissement (sans unité) Ωs : vitesse de synchronisme
Glissement (g)	$g = \frac{\Omega s - \Omega}{\Omega s} = 1 - \frac{\Omega}{\Omega s}$	
Fréquence des courants rotoriques (fr) en hertz	$fr = g \cdot f$	f: fréquence d'alimentation
Puissance perdue dans le rotor	$Pr = g \cdot M \cdot \Omega s$	M : couple moteur électromagnétique
Rendement du moteur	$\eta = \frac{Pu}{Pa}$	


DIPOLES FONDAMENTAUX

Résistance :

ixesistance.		
Résistance (R) en ohm	$R = \rho \cdot \frac{L}{S}$ $R = Ro \cdot (1 + at + bt^{2})$	 ρ : résistivité du matériau (Ω.m) Ro : résistance du matériau à O°C a : coefficient de température
Couplage en série	$Re = R_1 + R_2 + R_3$	Re : résistance équivalente
Couplage en parallèle	$\frac{1}{Re} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $Ge = G_1 + G_2 + G_3$	G: conductance = $\frac{1}{R}$
Impédance (Z) en ohm	Z = R	Déphasage φ = 0°
Code des couleurs	Code des couleurs 1	Tolérance (4ème anneau): or: $\pm 5\%$ argent: $\pm 10\%$ $- 2000 = 2200 \Omega = 2,2 k\Omega \pm 5\%$

Condensateur:

	Condensateur:	
Charge (Q) en coulomb	Q = C. U	U : tension (volt) C : Capacité (farad)
Capacité (C) en farad	$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{S}{d}$	Eo: permittivité du vide = 8,85 10 ⁻¹² Er: permittivité relative ou constante diélectrique du milieu isolant
Couplage parallèle	$\mathbf{C} = \mathbf{C}_1 + \mathbf{C}_2 + \mathbf{C}_3$	
Couplage série	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	
Constante de temps (charge) (τ) en seconde	$\tau = R \cdot C$	R: résistance en ohm
Energie (Wc) en joule	$Wc = \frac{1}{2} \cdot C \cdot U^2$	Energie mise en réserve dans le condensateur
Code des couleurs		

Bobine:

Flux (Φ) en wéber	Ф= L . I	L: unité d'inductance (henry)
F.E.M. d'auto-induction (e) en volt	$e = -L \cdot \frac{di}{dt}$	
Constante de temps (τ) en seconde	$\tau = \frac{L}{R}$	L : unité d'inductance (henry) R : résistance en ohm

3

6

10

11

M

3

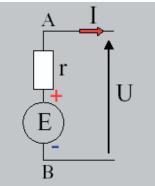
4

5

6

8

10


CIRCUITS ELECTRIQUES

Circuit ouvert I=0 U=E

$$V_A - V_B = U = E - rI$$

$$P = EI - rI^2$$

$$W = EI.t - rI^2t$$

r résistance interne

E f.e.m en Volts

U différence de potentiel en Volts

P en Watts

W en Joules et t en secondes

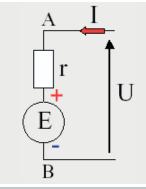
Circuit récepteur

Circuit générateur

Tension

Puissance

Energie


Tension

Puissance

$$U=E+rI$$

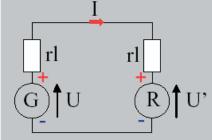
$$P = U I = EI + rI^2$$

$$\mathbf{W} = \mathbf{E}.\mathbf{I}.\mathbf{t} + r\mathbf{I}^2.\mathbf{t}$$

Circuit conducteur

Energie

Chute de tension en ligne


Puissance et

Energie perdue

$$U-U'=2 \eta I$$

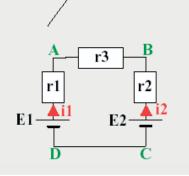
$$P = 2 \eta I^2$$

$$W = 2 \eta I^2 t$$

Lois de Kirchhoff

1. Loi des noeuds

2. Loi des mailles


 $i_1 + i_2 + i_3 = i_4 + i_5$ Au nœud (N): la somme des courants égale à O

$$\mathbf{V_A} - \mathbf{V_D} = \mathbf{V_{AD}}$$

$$\begin{split} \mathbf{V}_{AD} &= E1 - r1.i1 \\ \mathbf{V}_{BC} &= E2 - r2.i2 \end{split}$$

$$V_{AD} \cdot V_{AB} \cdot V_{BC} = 0$$

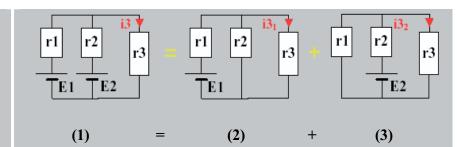
$$U = R \cdot I$$

R: résistance du conducteur (ohm)

Loi d' ohm (Conducteurs passifs)

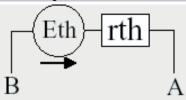
ÉLECTRICITÉ

5


6

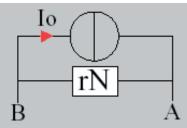
8

TRANSFORMATIONS DE CIRCUITS


Principe de superposition

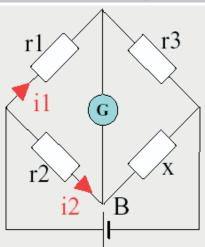
(1) est la superposition de (2) et (3)

exemple : $i3 = i3_1 + i3_2$


Théorème de Thévenin

E_{th}: tension mesurée entre A et B à vide.

R_{th}: résistance vu des bornes A et B lorsqu' on annule toutes les Sources (courant = circuit ouvert, tension = 1 fil).


Théorème de Norton

Io: courant circulant entre les bornes A et B en court circuit.
rN: résistance vu des bornes A et B lorsqu' on annule toutes les
Sources (courant = circuit ouvert, tension = 1 fil).

Pont de Wheaston

(mesure de résistance)

A l'équilibre : $V_A - V_B = 0$

$$r1.i1 = r2.i2$$

 $r3.i1 = x.i2$

d'où
$$x = \frac{r^2}{r^1} \cdot r^3$$

10

11